
A AP-703

Order Number: 272627-001

APPLICATION
NOTE

DRAM Controller for 33 MHz
i960® CA/CF Microprocessors

Sailesh Bissessur

SPG EPD 80960 Applications Engineer

Intel Corporation
Embedded Processor Division
Mail Stop CH5-233
5000 W. Chandler Blvd.
Chandler, Arizona 85226

February 2, 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided
in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product
order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995

A AP-703

iii

DRAM CONTROLLER FOR 33 MHZ I960® CA/CF MICROPROCESSORS

1.0 INTRODUCTION... 1

2.0 OVERVIEW ... 1

2.1 Page Mode DRAM SIMM Review ... 1

2.2 Bank Interleaving... 1

2.3 Burst Capabilities for 32-Bit Bus.. 1

3.0 BASIC DRAM CONTROLLER .. 2

3.1 Control Logic ... 2
3.1.1 Refresh Logic (CAS-before-RAS) 3
3.1.2 Clock Generation 3
3.1.3 Wait State Profile 3

3.2 Address Path ... 3

3.3 Data Path... 3

3.4 SIMM ... 4

4.0 STATE MACHINES AND SIGNALS... 4

4.1 ACCESS State Machine.. 4

4.2 PENDING State Machine .. 5

4.3 ODDACCESS State Machine.. 5

4.4 BANKSELA State Machine.. 5

4.5 BANKSELB State Machine.. 5

4.6 ADDRMUX State Machine .. 5

4.7 A3EVEN State Machine .. 5

4.8 A3ODD State Machine .. 5

4.9 RFEVENBK State Machine ... 5

4.10 CASPIPE State Machine... 5

4.11 CASPIPO State Machine... 5

4.12 CASE_B3:0 State Machines.. 5

4.13 CASO_B3:0 State Machines ... 6

4.14 RASEVEN State Machine ... 6

4.15 RASODD State Machine ... 6

4.16 SRASE State Machine .. 6

4.17 RDEN Signal ... 6

4.18 WRE Signal ... 6

4.19 WRO Signal... 6

4.20 REFREQ Signal... 6

AP-703 A

iv

5.0 DRAM CONTROLLER ACCESS FLOW ... 6

5.1 Quad-Word Read .. 6

5.2 Single-Word Read... 8

5.3 Quad-Word Write .. 9

5.4 Single-Word Write ... 12

5.5 Refresh Cycles .. 13

6.0 CONCLUSION .. 14

7.0 RELATED INFORMATION .. 14

APPENDIX A
PLD EQUATIONS ... A-1

FIGURES
Figure 1. Two-Way Interleaving ... 1

Figure 2. Quad-Word Access Example Showing ADS and BLAST Timings.......................... 2

Figure 3. DRAM Controller Block Diagram .. 2

Figure 4. Address Path Logic... 3

Figure 5. Data Path Logic .. 4

Figure 6. Basic ACCESS State Machine ... 4

Figure 7. Quad-Word Read State Diagram.. 7

Figure 8. Quad-Word Read Timing Diagram ... 8

Figure 9. Single-Word Read State Diagram (A2 = 1)... 9

Figure 10. Single-Word Read Timing Diagram (A2 = 1) .. 9

Figure 11. Quad-Word Write State Diagram.. 10

Figure 12. Quad-Word Write Timing Diagram.. 11

Figure 13. Single-Word Write State Diagram (A2 = 1)... 12

Figure 14. Single-Word Write Timing Diagram (A2 = 1) .. 12

Figure 15. Refresh State Diagram ... 13

Figure 16. Refresh Timing Diagram ... 13

TABLES
Table 1. Wait State Profiles (33 MHz).. 3

Table A-1. 33 MHz DRAM Controller PLD Equations.. A-1
Table A-2. Signal and Product Term Allocation... A-23

A AP-703

1

1.0 INTRODUCTION

This application note describes a DRAM controller for use
with the i960® CA/CF 33 MHz microprocessors. Other
application notes are available which describe DRAM
controllers for the i960 CF and Jx processors; see Section
7.0, RELATED INFORMATION for ordering information.

This DRAM controller’s design features include:

• Interleaved design

• Can use standard 70 ns DRAM SIMM

• 3-0-0-0/2-0-0-0 back-to-back/idle bus wait state burst
reads at speeds up to 33 MHz

• 3-1-1-1/2-1-1-1 back-to-back/idle bus wait state burst
writes at speeds up to 33 MHz

• No delay lines

This application note contains some general DRAM
controller theory as well as this design’s state machine
definitions and timing diagrams. It also contains the PLD
equations which were used to build and test the prototype
design. Timing analysis was verified with Timing
Designer*. PLD equations were created in ABEL* as a
device-independent design. Schematics were developed
with OrCAD*. The timing analysis, schematics and PLD
files are available through Intel’s America’s Application
Support BBS, at (916) 356-3600.

2.0 OVERVIEW

This section provides an overview of DRAM SIMM
operation and the concept of memory interleaving. It also
describes the i960 Cx microprocessor’s burst capabilities.

2.1 Page Mode DRAM SIMM Review

Page mode DRAM allows faster memory access by
keeping the same row address while selecting random
column addresses within that row. A new column address is
selected by deasserting CAS while keeping RAS active and
then asserting CAS with the new column address valid to
the DRAM. Page mode operation works very well with
burst buses, such as those in the i960 CA/CF processors, in
which a single address cycle can be followed by multiple
data cycles.

All WE pins on each SIMM are tied to a common WE line;
this feature requires the use of early write cycles. In an
early write cycle, write data is referenced to the falling edge
of CAS, not the falling edge of WE.

Each SIMM also has four CAS lines, one for every eight
(nine) bits in a 32-bit (36-bit) SIMM module. The four
CAS lines control the writing to individual bytes within
each SIMM.

2.2 Bank Interleaving

Interleaving significantly improves memory system
performance by overlapping accesses to consecutive
addresses. Two-way interleaving is accomplished by
dividing the memory into two 32-bit banks (also referred to
as “leaves”):

• one bank for even word addresses (A2=0)

• one bank for odd word addresses (A2=1)

The two banks are read in parallel and the data from the two
banks is multiplexed onto the processor's data bus. This
overlaps the wait states of:

• the second access with the first

• the third access with the second

• the fourth access with the third

Figure 1 shows DRAM with a 2-1-1-1 quad word burst read
wait state profile being interleaved to generate a 2-0-0-0
wait state system.

Figure 1. Two-Way Interleaving

2.3 Burst Capabilities for 32-Bit Bus

A bus access starts by asserting ADS in the address cycle,
and ends by asserting BLAST in the last data cycle. Figure
2 shows ADS and BLAST timings for a quad-word access.

CLK

Even

Odd

CPU

A

A

A

W

W

W

W

W W D

W

D W

D

D

D

W

D D

D

A = Address W = Wait D = Data

Bank

Bank

AP-703 A

2

Figure 2. Quad-Word Access Example Showing

ADS and BLAST Timings

The i960 Cx processor’s burst protocol requires:

• Quad-word and triple-word requests always start on
quad word boundaries (A3 = 0, A2 = 0).

• Double-word requests always start on double word
boundaries (A3 = X, A2 = 0).

1X_CLK

ADS

BLAST

Ta Td0 Td1 Td2 Td3

D31:0 d0 d1 d2 d3

• Single-word requests can start on any word boundary
(A3 = X, A2 = X).

• Any request starting on an odd word boundary never
bursts (A3 = X, A2 = 1).

3.0 BASIC DRAM CONTROLLER

The DRAM controller comprises four distinct blocks:
control logic, address path, data path, and the DRAM
SIMMS. This section describes each block.

3.1 Control Logic

The DRAM controller is centered around a four-bit state
machine which controls DRAM bank accesses and DRAM
refresh. All timings are generated based on the four-bit state
machine’s outputs. Some states are used for both read and
write accesses. The state machine uses the W_R signal from
the processor to distinguish between reads and writes. This
technique allows the state machine to use fewer states;
therefore, fewer output bits.

Figure 3. DRAM Controller Block Diagram

Even

DRAM

ADDR
MUX

74F244 74F257 74F244

i960® CA/CF
Processor

A31:2

BE3:0

A31:2

BE3:0

Control
ADS
BLAST
W/R

RESET

1X_CLKPCLK

RESET

CLKINOSC
READY

RASO

CASOB3:0

WRO

RASE

CASEB3:0

D31:0

EN EN

WE

BankCAS3:0

RAS3:0

DQ31:0

DA0E

DA0O

DA10:1MUXA24:4

A3E

A3O

Odd

DRAM
Bank

WE

CAS3:0

DQ31:0

4

4

32 32

System RESET

WRE

A/B
EN

SELA/SELB
RDEN

CLOCK
GEN

B A

2X_CLK

2

74F257

RAS3:0

A AP-703

3

3.1.1 Refresh Logic (CAS-before-RAS)

Typically DRAM needs to be refreshed every 15.6 µs. In
this design, due to power requirements needed to refresh an
entire DRAM array, one bank is refreshed at a time. The
DRAM controller uses an eight-bit counter to generate
refresh requests. A refresh request is generated every
7.8 µs. The DRAM controller toggles between refreshing
each bank every 7.8 µs which means each bank is
effectively refreshed every 15.6 µs.

A refresh request has priority over a processor request.
When a processor and a refresh request occur simulta-
neously, the DRAM controller sequences a refresh to the
appropriate DRAM bank while the PENDING state
machine posts the processor request. The pending request is
then serviced after the refresh is completed.

An eight-bit synchronous down counter is used to generate
refresh requests. The counter is clocked using 1X_CLK
clock. REFREQ is asserted each time the counter reaches
zero. Counting is inhibited when the counter reaches zero.
The counter is reloaded with 0xff and counting resumes
after the ACCESS state machine services the refresh.
During reset, the counter is loaded with 0xff.

3.1.2 Clock Generation

In the tested design, Motorola* MC88915 low skew CMOS
PLL generates the clock signals for the DRAM controller.
The MC88915 uses PCLK2 as an input, and produces four
very low skew copies of PCLK2, as well as a 2x PCLK. At
33 MHz, the maximum skew between PCLK2 and any of
the MC88915 outputs was calculated to be ±1 ns, while the
skew between any of the individual outputs is ±750 ps
under equal loading conditions. All clock lines are
terminated with 22 ohm series resistors.

3.1.3 Wait State Profile

The DRAM Controller uses the processor’s READY signal
to control wait states. The MCON register is initialized as
follows: (NXAD = NXDD = NXDA = 0). Table 1, Wait State
Profiles (33 MHz), provides the wait state profiles for read
and write accesses up to 33 MHz. Back-to-back accesses
require an extra wait state to meet RAS precharge time.
Therefore, to meet the RAS precharge time required, the
first data access uses three wait state cycles as opposed to
two wait state cycles for idle bus DRAM accesses.

3.2 Address Path

Figure 4 is a block diagram of the address path logic. The
2-to-1 multiplexers combine the row and column addresses
into a singular row/column address that the DRAM
requires. DA0E and DA0O equivalent signals are
generated, one for each bank. DA0E and DA0O are
generated by using A3E and A3O respectively. DA0E and
DA0O are the only address bits that increment during
bursts. The timing of these signals during bursts is critical
for proper operation.

Figure 4. Address Path Logic

3.3 Data Path

As shown in Figure 5, Data Path Logic, there is one data
path for reads and a separate data path for writes. The read
path uses 74F257 2:1 multiplexers to prevent contention
between the two DRAM banks. CAS can be active for both

Table 1. Wait State Profiles (33 MHz)

Wait State Profile

 Access Type Back-To-Back Idle Bus

Quad Word Read 3-0-0-0 2-0-0-0

Triple Word Read 3-0-0 2-0-0

Double Word Read 3-0 2-0

Single Word Read 3 2

Quad Word Write 3-1-1-1 2-1-1-1

Triple Word Write 3-1-1 2-1-1

Double Word Write 3-1 2-1

Single Word Write 3 2

A24:4

A3E

MUX

A3O

A11:4, A21, A23 DA10:1

3 x 74F257
Multiplexers

A20:12, A22, A24
B Inputs

A Inputs

Select

DA0E

DA0O

NOTE: Thicker lines indicate a bus.

AP-703 A

4

banks at the same time, necessitating use of the multi-
plexers. The multiplexer outputs are enabled only during
reads by the RDEN signal. The multiplexers are switched
using SELA and SELB. These signals are derived from the
states of the ACCESS state machine and address A2.

The write data path consists of eight 8-bit 74F244 buffers,
four for each bank. The buffer outputs are enabled by WRE
and WRO.

Figure 5. Data Path Logic

3.4 SIMM

The SIMM block consists of two standard 72-pin SIMM
sockets, arranged as two banks: odd and even. The x36
SIMM parity bits are not used in this design. However, x36
SIMMs are standard for PCs and workstations and are
readily available. The only penalty is more loading on the
address and control lines due to the extra DRAM devices of
x36 SIMM. In the tested design, all address and control
lines to the SIMMs are terminated with 22 ohm resistors.

RDEN

SELA / SELB

D31:0

WRO

OE

S

4 x 74F244
Buffers

8 x 74F257
Multiplexers

4 x 74F244

A

B

Even

Odd

OE

OE

WRE

 Buffers

4.0 STATE MACHINES AND SIGNALS

This section describes the state machines and signals used
in this design. Most of the state machines are simple and the
PLD equations can be referenced in APPENDIX A. The
ACCESS state machine is the most complex of all the state
machines; for that reason, this application note provides
more detail on the operations of this state machine. In this
design, some state machines are clocked with the 1X_CLK
clock (bus clock frequency) and others with the 2X_CLK
clock (twice the bus clock frequency).

All PLD equations are written in ABEL. APPENDIX A,
PLD EQUATIONS contains a listing of the PLD equation
file. State machine transitions described here follow the
ABEL conventions for logic operators:

• ! represents NOT, bit-wise negation

• & represents AND

• # represents OR

To follow ABEL conventions, active LOW signals (such as
ADS) already have a polarity assigned. For example, in the
state machines, ADS refers to the asserted state (LOW) and
!ADS refers to the non-asserted state (HIGH).

4.1 ACCESS State Machine

The ACCESS state machine, the “heart” of the DRAM
controller, is implemented as a four-bit state machine. See
Figure 6, Basic ACCESS State Machine. It is responsible
for sequencing accesses and refreshes to the DRAM banks.

From the IDLE state, the access state machine is sequenced
based on these three events:

• Refresh requests from the counter

• DRAM requests from the processor

• PENDING state machine requests

Figure 6. Basic ACCESS State Machine

IDLE
BLAST

ADS & (DRAM Address)

REFRESH

REFREQ

ACC_PEND
ACCESS

A AP-703

5

4.2 PENDING State Machine

The PENDING state machine is a one-bit state machine
which monitors DRAM requests from the processor. This is
necessary because a DRAM refresh has priority over a
processor request. Therefore, this state machine is used to
post the processor request. The state machine gets reset
once the ACCESS state machine starts sequencing the
pending request. The state machine generates ACC_PEND.

4.3 ODDACCESS State Machine

The ODDACCESS state machine is clocked using the
1X_CLK clock. It is a one-bit state machine which
monitors the initial state of the processor’s address A2.
Several state machines in this design use the output of this
state machine as inputs. Address A2 from the processor
indicates whether an access starts on an even or odd word
boundary. The ACCESS state machine uses this bit exten-
sively. It is important to latch address A2 because the
processor toggles address A2 on burst accesses. This state
machine generates LA2.

4.4 BANKSELA State Machine

The BANKSELA state machine is a one-bit state machine
which is used to control the data multiplexer, primarily to
select between even or odd data during read accesses. This
state machine is clocked using the 1X_CLK clock. It
generates SELA.

4.5 BANKSELB State Machine

BANKSELB is a one-bit state machine which controls the
data multiplexer, primarily to select between even or odd
data during read accesses. This state machine is clocked
using the 1X_CLK clock. It generates SELB.

4.6 ADDRMUX State Machine

The ADDRMUX state machine is a one-bit state machine
which is used to control the address multiplexers,
essentially to select between row or column addresses. It is
clocked using the 2X_CLK clock. This state machine
generates MUX. This signal is a delayed version of RASE.
Delaying the switching of the row address by one 2X_CLK
clock cycle provides ample row address hold time (tRAH)
required by the DRAM. The row address is selected while
MUX is high; otherwise, the column address is selected.

4.7 A3EVEN State Machine

The A3EVEN state machine is a one-bit state machine
which is toggled on burst accesses to select the next data
word (next column data). The state machine is initially
loaded with the value of the processor’s address A3 and
then toggled for the next data access. This state machine is
clocked using the 2X_CLK clock, and generates A3E. This
signal is an input to the address multiplexer.

4.8 A3ODD State Machine

The A3ODD state machine is a one-bit state machine and
has the same functionality as the A3EVEN state machine.
This state machine generates A3O.

4.9 RFEVENBK State Machine

The RFEVENBK state machine is a one-bit state machine
which is used to indicate which of the two banks (even or
odd) to refresh. The two banks are refreshed separately. The
even bank is refreshed when the RFEVENBK state
machine is active; otherwise, the odd bank is refreshed. The
output of this state machine is toggled on every refresh.
This state machine generates REFEVEN.

4.10 CASPIPE State Machine

The CASPIPE state machine is a one-bit state machine
which generates a pipelined CAS signal one 2X_CLK
clock cycle earlier. The output of this state machine is then
fed to the CASE_B3:0 state machines where it is recon-
structed to drive the CAS lines of the even bank. This state
machine generates CASEE.

4.11 CASPIPO State Machine

CASPIPO is a one-bit state machine which generates a
pipelined CAS signal one 2X_CLK clock cycle earlier. Its
output is then fed to the CASO_B3:0 state machines where
it is reconstructed to drive the CAS lines of the odd bank.
This state machine generates CASOO.

4.12 CASE_B3:0 State Machines

The CASE_B3:0 state machines control the CAS pins of
the even bank. CASE_B0 controls the least significant byte
and CASE_B3 controls the most significant byte. The
CASE_B0 state machine generates CASEB0, and the
CASE_B3 state machine generates CASEB3. CASEB0 is

AP-703 A

6

asserted when CASEE and the processor’s BE0 signal are
asserted. CASEB3 is asserted when CASEE and the
processor’s BE3 signal are asserted. The CASE_B3:0 state
machines are clocked using the 2X_CLK clock.

4.13 CASO_B3:0 State Machines

The CASO_B3:0 state machines control the CAS pins of
the odd bank. CASO_B0 controls the least significant byte
and CASO_B3 controls the most significant byte. The
CASO_B0 state machine generates CASOB0, and the
CASO_B3 state machine generates CASOB3. CASOB0 is
asserted when CASOO and the processor’s BE0 signal are
asserted. CASOB3 is asserted when CASOO and the
processor’s BE3 signal are asserted. The CASO_B3:0 state
machines are clocked using the 2X_CLK clock.

4.14 RASEVEN State Machine

RASEVEN is a one-bit state machine which is used to
generate the RAS signals for the even bank. It is clocked
using the 2X_CLK clock; it generates RASE.

4.15 RASODD State Machine

RASODD is a one-bit state machine which is used to
generate the RAS signals for the odd bank. It is clocked
using the 2X_CLK clock; it generates RASO.

4.16 SRASE State Machine

SRASE is a one-bit state machine which is used to monitor
back-to-back DRAM accesses. It is generated by shifting
RASE by one 1X_CLK clock cycle. This state machine
generates SRASE. By using this signal’s state, the DRAM
controller can eliminate one wait state cycle for accessing
the first data word. Back-to-back accesses require an extra
wait state cycle to satisfy the RAS precharge time (tRP).

4.17 RDEN Signal

RDEN is asserted while a DRAM read is in progress. It
controls the data multiplexers output enables.

4.18 WRE Signal

WRE is asserted while a DRAM write is in progress. It
controls the even leaf WE lines to perform early writes. It
also controls the even data path buffers output enables.

4.19 WRO Signal

WRO is asserted while a DRAM write is in progress. It
controls the odd leaf WE lines to perform early writes. It
also controls the odd data path buffers output enables.

4.20 REFREQ Signal

REFREQ, an active low signal, is the output of an eight-bit
counter. The counter is clocked using 1X_CLK. REFREQ
is asserted when the counter reaches zero. The ACCESS
state machine uses REFREQ to sequence refreshes.

5.0 DRAM CONTROLLER ACCESS FLOW

This section explains how the ACCESS state machine is
sequenced while reading, writing, and refreshing DRAM.
Examples used are:

• quad-word read

• single-word read

• quad-word write

• single-word write

• refresh

The examples in this application note assume back-to-back
DRAM accesses or pending accesses. For example, the first
data access of a DRAM request uses three wait states for
both reads and writes. For idle bus accesses, the ACCESS0
state is skipped, allowing only two wait states.

Refer to APPENDIX A, PLD EQUATIONS. The ACCESS
state machine uses SRASE to detect back-to-back accesses.

RDEN is asserted during read accesses while WRE and
WRO are asserted during write accesses.

5.1 Quad-Word Read

Figure 7 shows the state diagram for a quad-word read state
diagram. Figure 8 shows a quad-word read timing diagram.
This state diagram shows the paths for triple-, double-, and
single-word reads. Single-word reads which are aligned on
odd word boundaries use a different path; therefore, a
separate example is used to explain that state machine path.

A AP-703

7

Figure 7. Quad-Word Read State Diagram

From the IDLE state, the machine enters the ACCESS0
state due to a processor request or a pending processor
request. At the end of the IDLE state, the A3EVEN and
A3ODD state machines are loaded with the processor’s
address A3 and the ODDACCESS state machine is loaded
with the processor’s address A2. While in the IDLE state,
MUX is deasserted, which selects the row address.

At the end of the ACCESS0 state, RASE and RASO are
asserted. The machine then proceeds to ACCESS1 state.

In the middle of the ACCESS1 state, MUX is asserted. This
causes the column address to be selected. At the end of
ACCESS1, CASEE is asserted. From ACCESS1, the
machine enters ACCESS2 state.

In the middle of the ACCESS2 state, CASEB3:0 are
asserted if CASEE and the respective byte enable signals

ACCESS3

ACCESS0

ACCESS1

IDLE

ACCESS2

ACCESS4 ACCESS5 ACCESS6

Tw

Tw

Tw

Td0 Td1 Td2 Td3

A

BC

D

E

F H J

G

I K
L

A = ADS & !REFREQ & !ACC_PEND & DRAMADDR & SRASE

!REFREQ & ACC_PEND

B = ADS & !REFREQ & !ACC_PEND & DRAMADDR

C = LA2

D = UNCONDITIONAL

E = UNCONDITIONAL

F = !BLAST
G = BLAST & LA2

H = !BLAST

I = W_R & BLAST
J = !BLAST
K = BLAST

L = UNCONDITIONAL

& !SRASE & !A2

from the processor are asserted. At the end of ACCESS2,
CASOO is asserted or BLAST is not asserted. The machine
then proceeds to the ACCESS3 state.

The ACCESS3 state is the first data cycle (Td0) for read
requests which are aligned on even word boundaries
(A2=0). In the middle of the ACCESS3 state, CASOB3:0
are asserted if CASOO and the respective byte enable
signals from the processor are asserted, whereas CASEE is
deasserted. At the end of ACCESS3, CASEB3:0 are
deasserted if they were earlier asserted. CASEB3:0 are
deasserted because CASEE is sampled deasserted. CASEE
is reasserted at the end of ACCESS3 to initiate the third
data (Td2) access. The pending state machine is reset before
leaving this state. From ACCESS3, the machine can
proceed to either the IDLE state or the ACCESS4 state. If
BLAST is asserted, the machine proceeds to the IDLE
state; otherwise, it proceeds to the ACCESS4 state.

The ACCESS4 state is the second data cycle (Td1) for read
accesses. In the middle of ACCESS4, CASOO is
deasserted. At the end of ACCESS4, CASOB3:0 are
deasserted if they were earlier asserted. CASOB3:0 are
deasserted because CASOO is sampled deasserted.
CASOO is reasserted at the end of ACCESS4 to initiate the
fourth data (Td3) access. From ACCESS4, the machine can
proceed to either the IDLE state or the ACCESS5 state. If
BLAST is asserted, the machine proceeds to the IDLE
state; otherwise, to the ACCESS5 state.

The ACCESS5 state is the third data cycle (Td2) for read
accesses. In the middle of ACCESS5, CASOB3:0 are
asserted when CASOO and the respective byte enable
signals from the processor are sampled asserted, whereas
CASEE is deasserted. At the end of ACCESS5, the
CASEB3:0 are deasserted if they were earlier asserted.
CASEB3:0 are deasserted because CASEE is sampled
deasserted. From ACCESS5, the machine can proceed to
either the IDLE state or the ACCESS6 state. When BLAST
is asserted, the machine proceeds to the IDLE state,
otherwise to the ACCESS6 state.

ACCESS6 is the fourth and last data cycle (Td3) for read
accesses. In the middle of ACCESS6, CASOO is
deasserted. At the end of ACCESS6, CASOB3:0 are
deasserted. CASOB3:0 are deasserted because CASOO is
sampled deasserted. From ACCESS6, the machine
proceeds to IDLE state while deasserting RASE and
RASO.

AP-703 A

8

Figure 8. Quad-Word Read Timing Diagram

1X_CLK

ADS

A31:3

RASE / RASO

DA10:1

A3E

CASEE

CASEB3:0

D31:0E

A30

CASOO

CASOB3:0

D31:0O

D31:0

IDLE

READY

ACC0 ACC1 ACC2 ACC3 ACC4 ACC5 ACC6

d2

d1 d3

Tw Tw Td0Tw Td2Td1 Td3Ta

d0

d0

ColumnRow

d1 d2 d3

5.2 Single-Word Read

The ACCESS state machine takes a slightly different path
when a read request is aligned on an odd word boundary.
Figure 9 shows the state diagram for a single-word read;
Figure 10 shows a single-word read timing diagram.

From the IDLE state, the machine enters the ACCESS0
state due to a processor request or a pending processor
request. At the end of the IDLE state, the A3EVEN and
A3ODD state machines are loaded with the processor’s
address A3 and the ODDACCESS state machine is loaded
with the processor’s address A2. MUX is deasserted in the
IDLE state, which selects the row address.

At the end of the ACCESS0 state, RASO is asserted. The
machine then proceeds to the ACCESS2 state.

MUX is asserted in the middle of the ACCESS2 state; this
selects the column address. At the end of ACCESS2,
CASOO is asserted. From ACCESS2, the machine enters
ACCESS3 state.

In the middle of the ACCESS3 state, CASOB3:0 are
asserted when CASOO and the respective byte enable
signals from the processor are asserted. The pending state
machine is reset before leaving this state. The machine then
proceeds to ACCESS4 state.

The ACCESS4 state is the data cycle (Td0) for the read
access. In the middle of ACCESS4, CASOO is deasserted.
At the end of ACCESS4, CASOB3:0 are deasserted.
CASOB3:0 are deasserted because CASOO is sampled
deasserted. The machine then proceeds to the IDLE state.

A AP-703

9

Figure 9. Single-Word Read State Diagram
(A2 = 1)

ACCESS4

ACCESS0

ACCESS2

IDLE

ACCESS3

Tw

Tw

Tw

Td0

A

C
B

D

E

F

A = ADS & !REFREQ & !ACC_PEND & DRAMADDR

B = ADS & !REFREQ & !ACC_PEND & DRAMADDR

C = W_R & !LA2

D = UNCONDITIONAL

E = BLAST & !LA2

F = W_R & BLAST

& !SRASE & A2 & W_R

& SRASE
!REFREQ & ACC_PEND

Figure 10. Single-Word Read Timing Diagram
(A2 = 1)

5.3 Quad-Word Write

Figure 11 shows the state diagram for a quad-word write.
This state diagram also shows the state machine paths for
triple-, double-, and single-word writes. Single-word writes
which are aligned on odd word boundaries use a different
path; therefore, a different example is used to explain the
state machine path. Figure 12 shows the timing diagram for
a quad-word write.

From the IDLE state, the machine enters the ACCESS0
state due to a processor request or a pending processor
request. At the end of the IDLE state, the A3EVEN and
A3ODD state machines are loaded with the processor’s
address A3, and the ODDACCESS state machine is loaded
with the processor’s address A2. MUX is deasserted in the
IDLE state, which selects the row address.

At the end of the ACCESS0 state, RASE and RASO are
asserted. The machine then proceeds to the ACCESS1
state.

MUX is asserted in the middle of the ACCESS1 state; this
selects the column address. From ACCESS1, the machine
enters the ACCESS2 state.

1X_CLK

ADS

A31:3

DA10:1

A3O

CASOB3:0

D31:0O

D31:0

IDLE

READY

ACC0 ACC2 ACC3 ACC4

Tw Tw Td0TwTa

d0

d0

CASOO

RASO

ColumnRow

AP-703 A

10

In the middle of the ACCESS2 state, CASEE is asserted. At
the end of the ACCESS2 state, CASEB3:0 are asserted if
CASEE and the respective byte enable signals from the
processor are asserted. The machine then proceeds to the
ACCESS3 state.

The ACCESS3 state is the first or third data cycle (Td0 or
Td2) for write accesses which are aligned on even word
boundaries (A2 = 0). In the middle of the ACCESS3 state,
CASEE is deasserted. At the end of the ACCESS3 state,
CASEB3:0 are deasserted. This is because CASEE is
sampled deasserted. The pending state machine is reset
before leaving this state. From ACCESS3, the machine can
proceed to either the ACCESS4 state or the IDLE state. If
BLAST is asserted, the machine proceeds to the IDLE state,
otherwise to the ACCESS4 state.

In the middle of the ACCESS4 state, CASOO is asserted.
At the end of ACCESS4, CASOB3:0 are asserted if
CASOO and the respective byte enable signals from the
processor are asserted. The machine then proceeds to the
ACCESS5 state.

The ACCESS5 state is the second or fourth data cycle (Td1
or Td3) for write accesses which are aligned on even word
boundary (A2 = 0). In the middle of ACCESS5, CASOO is
deasserted. At the end of ACCESS5, CASOB3:0 are
deasserted. This is because CASOO is sampled deasserted.
From ACCESS5, the machine can proceed to either the
ACCESS2 state or the IDLE state. If BLAST is asserted,
the machine proceeds to the IDLE state, otherwise to the
ACCESS2 state.

Figure 11. Quad-Word Write State Diagram

ACCESS4

ACCESS0

ACCESS1

IDLE

ACCESS2

Tw

Tw

Tw Tw

ACCESS3
Td0/Td2

ACCESS5

Td1/Td3

A

C

D

E F H

I

G J

B

A = ADS & !REFREQ & !ACC_PEND & DRAMADDR

 # !REFREQ & ACC_PEND

B = ADS & !REFREQ & !ACC_PEND & DRAMADDR

C = LA2

D = UNCONDITIONAL

E = UNCONDITIONAL

F = !BLAST

G = BLAST & LA2

H = !W_R

I = !W_R & !BLAST

J = BLAST

& SRASE

& !SRASE & !A2

A AP-703

11

Figure 12. Quad-Word Write Timing Diagram

1X_CLK

ADS

A31:3

RASE / RASO

DA10:1

A3E

CASEE

CASEB3:0

D31:0E

A3O

CASOO

CASOB3:0

D31:0O

D31:0

IDLE

READY

Ta TwTw Tw Td0Tw Td2Td1Tw Td3Tw

ACC0 ACC1 ACC2 ACC3 ACC4 ACC5 ACC2 ACC3 ACC4 ACC5

d0 d2

d1

d0

d3

d1 d2 d3

ColumnRow

AP-703 A

12

5.4 Single-Word Write

The ACCESS state machine takes a slightly different path
when the write request is aligned on an odd word boundary.
Figure 13 shows the state diagram for a single-word write.
Figure 14 shows the timing diagram.

Figure 13. Single-Word Write State Diagram
(A2 = 1)

From the IDLE state, the machine enters the ACCESS0
state due to a processor request or a pending processor
request. At the end of the IDLE state, the A3EVEN and
A3ODD state machines are loaded with the processor’s
address A3, and the ODDACCESS state machine is loaded
with the processor’s address A2.

ACCESS0

ACCESS3

IDLE

ACCESS4

Tw

Tw

Tw

ACCESS5
Td0

A

BC

D

E

F

A = ADS & !REFREQ & !ACC_PEND & DRAMADDR

 # !REFREQ & ACC_PEND

B = ADS & !REFREQ & !ACC_PEND & DRAMADDR

C = !W_R & !LA2

E = !W_R

F = BLAST

D = !LA2 & BLAST

& SRASE

& !SRASE & A2 & !W_R

At the end of ACCESS0 state, RASO is asserted. The
machine then proceeds to the ACCESS3 state.

In the middle of ACCESS3, MUX is asserted. This causes
the column address to be selected. From ACCESS3, the
machine enters ACCESS4 state.

In the middle of ACCESS4, CASOO is asserted. At the end
of the ACCESS4 state, CASO3:0 are asserted if CASOO
and the byte enable signals from the processor are sampled
asserted. CASOO is deasserted at the end of ACCESS4.
The machine then proceeds to ACCESS5 state.

The ACCESS5 state is the data cycle (Td0) for the write
access which is aligned on odd word boundary (A2 = 1). At
the end of ACCESS5, CASOB3:0 are deasserted. The
machine then proceeds to the IDLE state while deasserting
RASO.

Figure 14. Single-Word Write Timing Diagram
(A2 = 1)

1X_CLK

ADS

A31:3

 RASO

DA10:1

A3O

CASOO

CASOB

D31:0O

D31:0

IDLE

READY

Ta Tw Td0Tw

ACC3 ACC4 ACC5ACC0

Tw

d0

d0

3:0

Row Column

A AP-703

13

5.5 Refresh Cycles

The refresh counter requests a DRAM refresh every 7.8 µs.
One bank is refreshed at a time in alternation. The ACCESS
state machine sequences the refresh and, based on the state
of the RFEVENBK state machine, either the even or the
odd bank is refreshed. The following text assumes the even
bank is to be refreshed; for example, the RFEVENBK state
machine is active. The odd bank is refreshed in a similar
manner.

Figure 15 shows the refresh state diagram. Figure 16 shows
the refresh timing diagram. From the IDLE state, the
machine enters the REFRESH0 state if REFREQ is
asserted. In the middle of REFRESH0, CASEE is asserted.
At the end of REFRESH0, CASEB3:0 is asserted because
CASEE is sampled asserted. At the end of REFRESH0 the
counter is also reloaded which deasserts REFREQ to get
deasserted. Counting resumes on the next clock edge. The
machine then proceeds to the REFRESH1 state.

In the middle of the REFRESH1 state, CASEE is deasserted
while RASE is asserted. At the end of the REFRESH1 state,
CASEB3:0 are deasserted. This is because CASEE is
sampled deasserted. The RFEVENBK state machine is
toggled at the end of REFRESH1. The machine then
proceeds to the REFRESH2 state. The next refresh
sequence refreshes the odd bank because the state of the
RFEVENBK state machine is altered.

In the REFRESH2 state, the machine unconditionally
proceeds to the REFRESH3 state.

At the end of the REFRESH3 state, RASE is deasserted.
The machine then proceeds to the IDLE state.

Figure 15. Refresh State Diagram

A = REFREQ
B = UNCONDITIONAL

REFRESH1

IDLE REFRESH0

REFRESH2

REFRESH3

A

B

C

D
E

C = UNCONDITIONAL

D = UNCONDITIONAL

E = UNCONDITIONAL

Figure 16. Refresh Timing Diagram

1X_CLK

RASE

CASEE

CASEB3:0

IDLE REF0 REF1 REF2 REF3 IDLE

REFREQ

IDLE

REFEVEN

RASO

CASOO

CASOB3:0

REF0 REF1 REF2 REF3IDLE..... idle i

AP-703 A

14

6.0 CONCLUSION

In conclusion, this application note describes a DRAM
controller for use with 33 MHz i960 CA/CF processors.
This DRAM controller was built and tested for validation
purposes. The PLD equations used to build and test the
prototype design were created in ABEL. All timing analysis
was verified with Timing Designer. Schematics were
created with OrCAD. The timing analysis, schematics and
PLD files are available through Intel’s America’s
Application Support BBS.

7.0 RELATED INFORMATION

This application note is one of four that are related to
DRAM controllers for the i960 processors. The following
table shows the documents and order numbers:

Document Name App.
Note # Order #

DRAM Controller for the 40 MHz i960®
CA/CF Microprocessors AP-706 272655

DRAM Controller for the i960® JA/JF/JD
Microprocessors AP-712 272674

Simple DRAM Controller for 25/16 MHz
i960® CA/CF Microprocessors AP-704 272628

To receive these documents or any other available Intel
literature, contact:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect IL 60056-7641
1-800-879-4683

To receive files that contain the timing analysis, schematics
and PLD equations for this and the other DRAM controller
application notes, contact:

Intel Corporation
America’s Application Support BBS
916-356-3600

A AP-703

15

AP-703 A

16

A AP-703

A-1

APPENDIX A
PLD EQUATIONS

Table A-1 contains the PLD equations which were used to build and test the prototype design. Table A-2 defines signal
and product term allocation. The PLD equations were created in ABEL as a device-independent design. Using the ABEL*
software, a PDS file was created and subsequently imported into PLDSHELL* software. PLDSHELL was used to fit the
design into an Altera EPX780 FLEXlogic* PLD. PLDSHELL was also utilized to create the JEDEC file, and to simulate
the design.

In addition, this appendix contains a table listing the number of product terms used by each macrocell.

The DRAM Controller does not use the APK_ACTIVE signal.

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 1 of 22)

Module CX33T
Title 'DRAM Controller for 25/33MHz
Source File CX33T.ABL
Revision Rev 0.0
Date 11/17/94
Designer Sailesh Bissessur
 Intel 80960 Applications Engineering'
"---
" 2-Way Interleaved DRAM controller for the 960Cx 33 AND 25MHz.
" This design also contains logic for FLASH, HEX DISPLAY, and Software Reset.
" DRAM - 0xA0000000
" FLASH - 0xFFFE0000
" HEX DISPLAY - 0xB8000000
" SW Reset - 0xB0000000
"---
" Uxx device 'IFX780_132';
" inputs signals
"
 CLK1 PIN 118 ; " 1x clock
 CLK2 PIN 52 ; " 2x clock

 A2 PIN; " Address A2
 !EXTRST PIN; " External Reset
 !CPUWAIT PIN; " Processor wait
 !ADS PIN; " Address Strobe
 !BLAST PIN; " Burst Last
 !W_R PIN; " Processor Read/Write
 A31 PIN; " Address A31
 A30 PIN; " Address A30
 A29 PIN; " Address A29
 A28 PIN; " Address A28
 A27 PIN; " Address A27
 DCLK1 PIN; " Delayed Clock
 A3 PIN; " Address A3
 !BE3 PIN; " Byte Enable 3
 !BE2 PIN; " Byte Enable 2

 !BE1 PIN; " Byte Enable 1
 !BE0 PIN; " Byte Enable 0
 !APK_ACTIVE PIN; " Indicates presence of ApLink

AP-703 A

A-2

" output signals
 !LA2 PIN istype 'reg'; " latched A2
 Q3 PIN istype 'reg'; " m/c bit3
 Q2 PIN istype 'reg'; " m/c bit2
 !RDEN PIN istype 'com'; " enables data mux '257s
 !SELA PIN istype 'reg'; " selects even odd data
 !SELB PIN istype 'reg'; " selects even odd data
 !READY PIN istype 'reg'; " Processor READY
 Q1 PIN istype 'reg'; " m/c bit1
 Q0 PIN istype 'reg'; " m/c bit0
 !ACC_PEND PIN istype 'reg'; " access pending indicator
 !RASO PIN istype 'reg'; " Odd RAS
 A3E PIN istype 'reg'; " Even Address Counter
 !REFEVEN PIN istype 'reg'; " which bank to refresh
 !CASEE PIN istype 'reg'; " Pipelined Even CAS
 !CASOO PIN istype 'reg'; " Pipelined Odd CAS
 A3O PIN istype 'reg'; " Odd Address Counter
 WAIT PIN istype 'com'; " wait state indicator
 !RASE PIN istype 'reg'; " Even RAS
 !MUX PIN istype 'reg'; " Selects between Even/Odd Col Addr

 !CASEB0 PIN istype 'reg'; " Byte 0 Even CAS
 !CASEB1 PIN istype 'reg'; " Byte 1 Even CAS
 !CASEB2 PIN istype 'reg'; " Byte 2 Even CAS
 !CASEB3 PIN istype 'reg'; " Byte 3 Even CAS
 !CASOB0 PIN istype 'reg'; " Byte 0 Odd CAS
 !CASOB1 PIN istype 'reg'; " Byte 1 Odd CAS
 !CASOB2 PIN istype 'reg'; " Byte 2 Odd CAS
 !CASOB3 PIN istype 'reg'; " Byte 3 Odd CAS
 S3 PIN istype 'reg'; " Refresh Counter 1 bit 3
 S2 PIN istype 'reg'; " Refresh Counter 1 bit 2
 S1 PIN istype 'reg'; " Refresh Counter 1 bit 1
 S0 PIN istype 'reg'; " Refresh Counter 1 bit 0
 T3 PIN istype 'reg'; " Refresh Counter 2 bit 3
 T2 PIN istype 'reg'; " Refresh Counter 2 bit 2
 T1 PIN istype 'reg'; " Refresh Coubter 2 bit 1
 T0 PIN istype 'reg'; " Refresh Counter 2 bit 0
 !REFREQ PIN istype 'com'; " Refresh Required
 !FLASHCS PIN istype 'reg'; " FLASH Chip Select
 !FLASHRD PIN istype 'reg'; " FLASH OE
 !FLASHWR PIN istype 'com'; " Flash WE
 !XCROE PIN istype 'reg'; " TRANSCEIVER OE control
 !XCRDIR PIN istype 'com'; " TRANSCEIVER DIR control
 !SWRST PIN istype 'reg'; " SW Reset Indicator
 !TRIGRST PIN istype 'reg'; " Triggers the Reset Device
 !RESET PIN istype 'reg'; " System Reset
 !WRE PIN istype 'com'; " Even Bank WE
 !WRO PIN istype 'com'; " Odd Bank WE
 !SRASE PIN istype 'reg'; " Latched RASE or RASO
 LED_LAT PIN istype 'reg'; " HEX Display Pulse

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 2 of 22)

A AP-703

A-3

"
C = .C.;
X = .X.;
"
CYCLE = [Q3,Q2,Q1,Q0];
ODDACCESS = [LA2];
BANKSELA = [SELA];
BANKSELB = [SELB];
PENDING = [ACC_PEND];
RDY = [READY];
RASEVEN = [RASE];
RASODD = [RASO];
CASPIPE = [CASEE];
CASPIPO = [CASOO];
ADDRMUX = [MUX];
A3EVEN = [A3E];
A3ODD = [A3O];
RFEVENBK = [REFEVEN];
CASE_B0 = [CASEB0];
CASE_B1 = [CASEB1];
CASE_B2 = [CASEB2];
CASE_B3 = [CASEB3];
CASO_B0 = [CASOB0];
CASO_B1 = [CASOB1];
CASO_B2 = [CASOB2];
CASO_B3 = [CASOB3];
REFCT2 = [T3,T2,T1,T0];
REFCT1 = [S3,S2,S1,S0];
DRAMADDR = (A31 & !A30 & A29 & !A28 & !A27);
FLASHADDR = (A31 & A30 & A29 & A28 & A27);
SWRSTADDR = (A31 & !A30 & A29 & A28 & !A27);
LEDADDR = (A31 & !A30 & A29 & A28 & A27);

"
ASSERT = ^b1;
DEASSERT = ^b0;

Z0 = ^b0000;
Z1 = ^b0001;
Z2 = ^b0010;
Z3 = ^b0011;
Z4 = ^b0100;
Z5 = ^b0101;
Z6 = ^b0110;
Z7 = ^b0111;
Z8 = ^b1000;
Z9 = ^b1001;
Z10 = ^b1010;
Z11 = ^b1011;
Z12 = ^b1100;
Z13 = ^b1101;
Z14 = ^b1110;
Z15 = ^b1111;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 3 of 22)

AP-703 A

A-4

IDLE = ^b0000;
ACCESS0 = ^b0001;
ACCESS1 = ^b0010;
ACCESS2 = ^b0011;
ACCESS3 = ^b0100;
ACCESS4 = ^b0101;
ACCESS5 = ^b0110;
ACCESS6 = ^b0111;
ACCESS7 = ^b1000; “this state is never entered
ACCESS8 = ^b1001; “this state is never entered
REFRESH0 = ^b1010;
REFRESH1 = ^b1011;
REFRESH2 = ^b1100;
REFRESH3 = ^b1101;
REFRESH4 = ^b1110; “this state is never entered
REFRESH5 = ^b1111; “this state is never entered

"""
"Holds state of A2 of Processor
"""
state_diagram ODDACCESS
 state ASSERT:
 if((CYCLE == IDLE) & A2) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if((CYCLE == IDLE) & !A2) then ASSERT
 else
 DEASSERT;
"""
"Even byte 0 CAS
"""
state_diagram CASE_B0
 state ASSERT:
 if(!Q3 & !CASEE) then DEASSERT
 else
 if(!Q3 & !WAIT & BLAST & W_R & !DCLK1) then DEASSERT
 else
 if(Q3 & !CASEE) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(!Q3 & CASEE & BE0) then ASSERT
 else
 if(Q3 & CASEE) then ASSERT
 else
 DEASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 4 of 22)

A AP-703

A-5

"""
"Even byte 1 CAS
"""
state_diagram CASE_B1
 state ASSERT:
 if(!Q3 & !CASEE) then DEASSERT
 else
 if(!Q3 & !WAIT & BLAST & W_R & !DCLK1) then DEASSERT
 else
 if(Q3 & !CASEE) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(!Q3 & CASEE & BE1) then ASSERT
 else
 if(Q3 & CASEE) then ASSERT
 else
 DEASSERT;
"""
"Even byte 2 CAS
"""
state_diagram CASE_B2
 state ASSERT:
 if(!Q3 & !CASEE) then DEASSERT
 else
 if(!Q3 & !WAIT & BLAST & W_R & !DCLK1) then DEASSERT
 else
 if(Q3 & !CASEE) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(!Q3 & CASEE & BE2) then ASSERT
 else
 if(Q3 & CASEE) then ASSERT
 else
 DEASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 5 of 22)

AP-703 A

A-6

"""
"Even byte 3 CAS
"""
state_diagram CASE_B3
 state ASSERT:
 if(!Q3 & !CASEE) then DEASSERT
 else
 if(!Q3 & !WAIT & BLAST & W_R & !DCLK1) then DEASSERT
 else
 if(Q3 & !CASEE) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(!Q3 & CASEE & BE3) then ASSERT
 else
 if(Q3 & CASEE) then ASSERT
 else
 DEASSERT;
"""
"Odd byte 0 CAS
"""
state_diagram CASO_B0
 state ASSERT:
 if(!Q3 & !CASOO) then DEASSERT
 else
 if(!Q3 & !WAIT & BLAST & W_R & !DCLK1) then DEASSERT
 else
 if(Q3 & !CASOO) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(!Q3 & CASOO & BE0) then ASSERT
 else
 if(Q3 & CASOO) then ASSERT
 else
 DEASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 6 of 22)

A AP-703

A-7

"""
"Odd byte 1 CAS
"""
state_diagram CASO_B1
 state ASSERT:
 if(!Q3 & !CASOO) then DEASSERT
 else
 if(!Q3 & !WAIT & BLAST & W_R & !DCLK1) then DEASSERT
 else
 if(Q3 & !CASOO) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(!Q3 & CASOO & BE1) then ASSERT
 else
 if(Q3 & CASOO) then ASSERT
 else
 DEASSERT;
"""
"Odd byte 2 CAS
"""
state_diagram CASO_B2
 state ASSERT:
 if(!Q3 & !CASOO) then DEASSERT
 else
 if(!Q3 & !WAIT & BLAST & W_R & !DCLK1) then DEASSERT
 else
 if(Q3 & !CASOO) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(!Q3 & CASOO & BE2) then ASSERT
 else
 if(Q3 & CASOO) then ASSERT
 else
 DEASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 7 of 22)

AP-703 A

A-8

"""
"Odd byte 3 CAS
"""
state_diagram CASO_B3
 state ASSERT:
 if(!Q3 & !CASOO) then DEASSERT
 else
 if(!Q3 & !WAIT & BLAST & W_R & !DCLK1) then DEASSERT
 else
 if(Q3 & !CASOO) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(!Q3 & CASOO & BE3) then ASSERT
 else
 if(Q3 & CASOO) then ASSERT
 else
 DEASSERT;
"""
"Keeps track of any pending access
"""
state_diagram PENDING
 state ASSERT:
 if(CYCLE == ACCESS3) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(ADS & DRAMADDR) then ASSERT
 else
 DEASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 8 of 22)

A AP-703

A-9

"""
"Indicates which Bank is to be refreshed next when !REFREQ becomes active
"""
state_diagram RFEVENBK
 state ASSERT:
 if((CYCLE == REFRESH1) & !DCLK1) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if((CYCLE == REFRESH1) & !DCLK1) then ASSERT
 else
 DEASSERT;
"""
"Selects even or odd data path while reading
"""
state_diagram BANKSELA
 state ASSERT:
 if((CYCLE == IDLE) & A2) then DEASSERT
 else
 if((CYCLE == ACCESS3)) then DEASSERT
 else
 if((CYCLE == ACCESS5)) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if((CYCLE == IDLE) & !A2) then ASSERT
 else
 if((CYCLE == ACCESS4)) then ASSERT
 else
 DEASSERT;
"""
"Selects even or odd data path while reading
"""
state_diagram BANKSELB
 state ASSERT:
 if((CYCLE == IDLE) & A2) then DEASSERT
 else
 if((CYCLE == ACCESS3)) then DEASSERT
 else
 if((CYCLE == ACCESS5)) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if((CYCLE == IDLE) & !A2) then ASSERT
 else
 if((CYCLE == ACCESS4)) then ASSERT
 else
 DEASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 9 of 22)

AP-703 A

A-10

"""
"Generates READY to the processor
"""
state_diagram RDY
 state ASSERT:
 if(W_R & BLAST) then DEASSERT
 else
 if(!W_R) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if((CYCLE == ACCESS2) & LA2) then ASSERT
 else
 if((CYCLE == ACCESS3) & W_R & !LA2) then ASSERT
 else
 if((CYCLE == ACCESS3) & W_R & LA2 & !BLAST) then ASSERT
 else
 if((CYCLE == ACCESS4) & !W_R) then ASSERT
 else
 DEASSERT;
"""
"Even RAS
"""
state_diagram RASEVEN
 state ASSERT:
 if((CYCLE == ACCESS3) & !DCLK1 & LA2 & BLAST) then DEASSERT
 else
 if((CYCLE == ACCESS4) & !DCLK1 & W_R & BLAST) then DEASSERT
 else
 if((CYCLE == ACCESS5) & !DCLK1 & BLAST) then DEASSERT
 else
 if((CYCLE == ACCESS6) & !DCLK1 & BLAST) then DEASSERT
 else
 if((CYCLE == REFRESH3) & !DCLK1) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if((CYCLE == IDLE) & !SRASE & ADS & !REFREQ & !ACC_PEND

 & DRAMADDR & !DCLK1) then ASSERT
 else
 if((CYCLE == ACCESS0) & !DCLK1) then ASSERT
 else
 if((CYCLE == REFRESH1) & DCLK1 & REFEVEN) then ASSERT
 else
 DEASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 10 of 22)

A AP-703

A-11

"""
"Odd RAS
"""
state_diagram RASODD
 state ASSERT:
 if((CYCLE == ACCESS3) & !DCLK1 & LA2 & BLAST) then DEASSERT
 else
 if((CYCLE == ACCESS4) & !DCLK1 & W_R & BLAST) then DEASSERT
 else
 if((CYCLE == ACCESS5) & !DCLK1 & BLAST) then DEASSERT
 else
 if((CYCLE == ACCESS6) & !DCLK1 & BLAST) then DEASSERT
 else
 if((CYCLE == REFRESH3) & !DCLK1) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if((CYCLE == IDLE) & !SRASE & ADS & !REFREQ & !ACC_PEND
 & DRAMADDR & !DCLK1) then ASSERT
 else
 if((CYCLE == ACCESS0) & !DCLK1) then ASSERT
 else
 if((CYCLE == REFRESH1) & DCLK1 & !REFEVEN) then ASSERT
 else
 DEASSERT;
"""
"Pipelined Even CAS
"""
state_diagram CASPIPE
 state ASSERT:
 if((CYCLE == ACCESS3) & DCLK1) then DEASSERT
 else
 if((CYCLE == ACCESS5) & DCLK1) then DEASSERT
 else
 if((CYCLE == ACCESS4) & !DCLK1 & BLAST & W_R) then DEASSERT
 else
 if((CYCLE == REFRESH1) & DCLK1) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if((CYCLE == ACCESS1) & W_R & !DCLK1) then ASSERT
 else
 if((CYCLE == ACCESS2) & !W_R & DCLK1) then ASSERT
 else
 if((CYCLE == ACCESS3) & W_R & !DCLK1 & !BLAST) then ASSERT
 else
 if((CYCLE == REFRESH0) & DCLK1 & REFEVEN) then ASSERT
 else
 DEASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 11 of 22)

AP-703 A

A-12

"""
"Pipelined Odd CAS
"""
state_diagram CASPIPO
 state ASSERT:
 if((CYCLE == ACCESS4) & W_R & DCLK1) then DEASSERT
 else
 if((CYCLE == ACCESS6) & W_R & DCLK1) then DEASSERT
 else
 if((CYCLE == ACCESS5) & W_R & BLAST & !DCLK1) then DEASSERT
 else
 if((CYCLE == ACCESS5) & !W_R & DCLK1) then DEASSERT
 else
 if((CYCLE == REFRESH1) & DCLK1) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if((CYCLE == ACCESS2) & W_R & LA2 & !BLAST & !DCLK1) then

ASSERT
 else
 if((CYCLE == ACCESS2) & W_R & !LA2 & !DCLK1) then ASSERT
 else
 if((CYCLE == ACCESS4) & W_R & !BLAST & !DCLK1) then ASSERT
 else
 if((CYCLE == ACCESS4) & !W_R & DCLK1) then ASSERT
 else
 if((CYCLE == REFRESH0) & DCLK1 & !REFEVEN) then ASSERT
 else
 DEASSERT;
"""
"Even address counter
"""
state_diagram A3EVEN
 state DEASSERT:
 if((CYCLE == IDLE) & !DCLK1 & A3) then ASSERT
 else
 if((CYCLE == ACCESS3) & !W_R & !DCLK1) then ASSERT
 else
 if((CYCLE == ACCESS3) & W_R & DCLK1) then ASSERT
 else
 DEASSERT;

 state ASSERT:
 if((CYCLE == IDLE) & !DCLK1 & !A3) then DEASSERT
 else
 ASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 12 of 22)

A AP-703

A-13

"""
"Odd address counter
"""
state_diagram A3ODD
 state DEASSERT:
 if((CYCLE == IDLE) & A3 & !DCLK1) then ASSERT
 else
 if((CYCLE == ACCESS4) & W_R & DCLK1) then ASSERT
 else
 if((CYCLE == ACCESS5) & !W_R & !DCLK1) then ASSERT
 else
 DEASSERT;

 state ASSERT:
 if((CYCLE == IDLE) & !A3 & !DCLK1) then DEASSERT
 else
 ASSERT;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 13 of 22)

AP-703 A

A-14

"""
"Main DRAM state machine - ACCESS state machine
"""
state_diagram CYCLE
 state IDLE:
 if(ADS & !REFREQ & !ACC_PEND & DRAMADDR & SRASE) then

ACCESS0
 else
 if(ADS & !REFREQ & !ACC_PEND & DRAMADDR & !SRASE & !A2)
 then ACCESS1
 else
 if(ADS & !REFREQ & !ACC_PEND & DRAMADDR & !SRASE & A2

& W_R) then ACCESS2
 else
 if(ADS & !REFREQ & !ACC_PEND & DRAMADDR & !SRASE & A2

& !W_R) then ACCESS3
 else
 if(!REFREQ & ACC_PEND) then ACCESS0
 else
 if(REFREQ) then REFRESH0
 else
 IDLE;

 state ACCESS0:
 if(W_R & !LA2) then ACCESS2
 else
 if(!W_R & !LA2) then ACCESS3
 else
 ACCESS1;

 state ACCESS1:
 goto ACCESS2;

 state ACCESS2:
 goto ACCESS3;

 state ACCESS3:
 if(BLAST & LA2) then IDLE
 else
 ACCESS4;

 state ACCESS4:
 if(W_R & BLAST) then IDLE
 else
 goto ACCESS5;

 state ACCESS5:
 if(BLAST) then IDLE
 else
 if(!W_R & !BLAST) then ACCESS2
 else
 goto ACCESS6;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 14 of 22)

A AP-703

A-15

 state ACCESS6:
 goto IDLE;

 state ACCESS7:
 goto ACCESS8;

 state ACCESS8:
 goto IDLE;

 state REFRESH0:
 goto REFRESH1;

 state REFRESH1:
 goto REFRESH2;

 state REFRESH2:
 goto REFRESH3;

 state REFRESH3:
 goto IDLE;

 state REFRESH4:
 goto IDLE;

 state REFRESH5:
 goto IDLE;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 15 of 22)

AP-703 A

A-16

"""
"Row/Column address select
"""
state_diagram ADDRMUX
 state ASSERT:
 if(!RASE & DCLK1) then DEASSERT
 else
 ASSERT;

 state DEASSERT:
 if(RASE & DCLK1) then ASSERT
 else
 DEASSERT;
"""
"Refresh Counter 1
""
state_diagram REFCT1
 state Z0:
 if(!Q3 & (REFCT2 == Z0)) then Z0
 else
 Z15;

 state Z1:
 if(Q3) then Z15
 else
 Z0;

 state Z2:
 if(Q3) then Z15
 else
 Z1;

 state Z3:
 if(Q3) then Z15
 else
 Z2;

 state Z4:
 if(Q3) then Z15
 else
 Z3;

 state Z5:
 if(Q3) then Z15
 else
 Z4;

 state Z6:
 if(Q3) then Z15
 else
 Z5;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 16 of 22)

A AP-703

A-17

 state Z7:
 if(Q3) then Z15
 else
 Z6;

 state Z8:
 if(Q3) then Z15
 else
 Z7;

 state Z9:
 if(Q3) then Z15
 else
 Z8;

 state Z10:
 if(Q3) then Z15
 else
 Z9;

 state Z11:
 if(Q3) then Z15
 else
 Z10;

 state Z12:
 if(Q3) then Z15
 else
 Z11;

 state Z13:
 if(Q3) then Z15
 else
 Z12;

 state Z14:
 if(Q3) then Z15
 else
 Z13;

 state Z15:
 if(Q3) then Z15
 else
 Z14;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 17 of 22)

AP-703 A

A-18

"""
"Refresh Counter 2
"""
state_diagram REFCT2
 state Z0:
 if(Q3) then Z15
 else
 Z0;

 state Z1:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z0;
 else
 Z1;

 state Z2:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z1;
 else
 Z2;

 state Z3:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z2;
 else
 Z3;

 state Z4:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z3;
 else
 Z4;

 state Z5:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z4;
 else
 Z5;

 state Z6:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z5;
 else
 Z6;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 18 of 22)

A AP-703

A-19

 state Z7:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z6;
 else
 Z7;

 state Z8:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z7;
 else
 Z8;

 state Z9:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z8;
 else
 Z9;

 state Z10:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z9;
 else
 Z10;

 state Z11:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z10;
 else
 Z11;

 state Z12:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z11;
 else
 Z12;

 state Z13:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z12;
 else
 Z13;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 19 of 22)

AP-703 A

A-20

 state Z14:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z13;
 else
 Z14;

 state Z15:
 if(Q3) then Z15
 else
 if(!Q3 & (REFCT1 == Z0)) then Z14;
 else
 Z15;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 20 of 22)

A AP-703

A-21

"
"Equations
"
EQUATIONS
[Q3,Q2,Q1,Q0,!SELA,!SELB,!READY,!LA2,!ACC_PEND].clk = CLK1;
[Q3..Q0].RE = RESET;
[!LA2,!ACC_PEND,!READY,!SELA,!SELB].PR = RESET;
"""
"Indicates wait state cycles
"""
WAIT = (CYCLE == IDLE) & W_R
 # (CYCLE == ACCESS0) & W_R
 # (CYCLE == ACCESS1) & W_R
 # (CYCLE == ACCESS2) & W_R
 # (CYCLE == ACCESS3) & W_R & !LA2;

[!MUX,!RASE,!RASO,!CASEE,!CASOO,A3E,A3O,!REFEVEN].clk = CLK2;
[!MUX,!RASE,!RASO,!CASEE,!CASOO,A3E,A3O,!REFEVEN].pr = RESET;

[!CASEB0,!CASEB1,!CASEB2,!CASEB3,!CASOB0,!CASOB1,!CASOB2,!CASOB3].clk = CLK2;

[T3,T2,T1,T0,S3,S2,S1,S0].clk = CLK1;
[T3,T2,T1,T0,S3,S2,S1,S0].pr = RESET;

"
"Refresh required indicator
"
REFREQ = !T3 & !T2 & !T1 & !T0 & !S3 & !S2 & !S1 & !S0;
"
"FLASH Chip Select
"
FLASHCS := ADS & FLASHADDR & !APK_ACTIVE
 # !ADS & !BLAST & FLASHCS;
"
"FLASH OE control
"
FLASHRD = FLASHCS & W_R;
"
"XCR OE control
"
XCROE := FLASHCS & !BLAST & !APK_ACTIVE
 # !ADS & LEDADDR & !BLAST;
"
"XCR DIR control
"
XCRDIR = W_R;
"
" Software reset indicator
"
SWRST := ADS & SWRSTADDR
 # !ADS & !BLAST & SWRST;

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 21 of 22)

AP-703 A

A-22

"
" Triggers the 7705 Reset Device
"
TRIGRST := TRIGRST;
TRIGRST.RE = SWRST;
"
"Pulse to the HEX DISPLAY
"
LED_LAT := !ADS & LEDADDR & XCROE & !BLAST;
"
"Latched RASE or RASO
"
SRASE := RASE # RASO;
"
"DRAM data path OE control while reading
"
RDEN = !Q3 & W_R & RASE;
"
"Even DRAM data path control while writing
"
WRE = !Q3 & !W_R & RASE;
"
"Odd DRAM data path control while writing
"
WRO = !Q3 & !W_R & RASE;

[!FLASHCS,!XCROE,!SWRST,!TRIGRST,LED_LAT,SRASE].clk = CLK1;

[!FLASHCS,!XCROE,!SWRST,!TRIGRST].pr = RESET;

LED_LAT.RE = RESET;

"

"Latched external reset

"

RESET := EXTRST;

RESET.CLK = CLK1;

" Test vectors

end CX33T

Table A-1. 33 MHz DRAM Controller PLD Equations (Sheet 22 of 22)

A AP-703

A-23

Table A-2. Signal and Product Term Allocation

OUTPUT MACROCELLS BURIED MACROCELLS

Signal Product Terms Signal Product Terms

RASE 7 CASEE 12

RASO 7 CASOO 14

READY 5 ACC_PEND 5

A3E 4 LA2 5

A3O 4 WAIT 2

RDEN 1 REFEVEN 6

SELA 4 T3 2

MUX 2 T2 8

Q3 3 T1 7

Q2 8 T0 6

Q1 9 S3 5

Q0 8 S2 4

CASEB3 3 S1 3

CASEB2 3 S0 2

CASEB1 3 REFREQ 1

CASEB0 3 SWRST 2

CASOB3 3 SRASE 1

CASOB2 3

CASOB1 3

CASOB0 3

FLASHCS 2

FLASHRD 1

TRIGRST 1

XCROE 2

XCRDIR 1

RESET 1

WRE 1

WRO 1

LED_LAT 1

SELB 4

AP-703 A

A-24

A AP-703

Index-1

INDEX

A AP-703

Index-3

A
A3EVEN state machine 5
A3ODD state machine 5
ACCESS state machine 3, 4

single-word read 8
single-word write 12

ADDRMUX state machine 5

B
bank interleaving 1
BANKSELECT state machine 5
buffers

74FCT244 4
burst capabilities 1

C
CASPIPE signal 5, 7, 10
CASPIPE state machine 5
CASPIPO signal 5, 7, 8
CASPIPO state machine 5
clock generation 3

skew 3
termination 3

D
DA0E signal 3
DA0O signal 3
data path 3
Double Word Read 3
Double Word Write 3
down counter (eight-bit synchronous) 3
DRAM

burst buses 1
early write cycles 1
page mode 1

DRAM controller
block diagram 2
overview 2

DRAM design
address path logic 3
data path 3
performance 1
SIMMs 4

DRAM refresh 13

G
generating 3

I
IDLE state 4, 7, 9
interleaving 1

L
leaves (two-way interleaving) 1

M
memory system performance 1
multiplexers

2-to-1 (74F257) 3
MUX signal 7

O
ODDACCESS state machine 5

P
PENDING state machine 3, 5

Q
Quad Word Read 3
Quad Word Write 3

R
RAS precharge time 3
RASE state machine 6
RASO state machine 6
RDEN signal 4, 6
REFEVEN state machine 5
REFREQ signal 3, 6
refresh cycles 13
refresh requests 3

generating 3
priorities 3

S
SEL signal 4
signals

CASPIPE 5, 7, 10
CASPIPO 5, 7
MUX 7
RDEN 6
REDN 4
REFREQ 3, 6
SEL 4
SRASE 6

AP-703 A

Index-4

signals (continued)
W_R 2
WRE 6
WREN 4
WRO 6

SIMMs 1
termination 4

Single Word Read 3
Single Word Write 3
SRASE signal 6
SRASE state machine 6
state machine

A3EVEN 5
A3ODD 5
ACCESS 3, 4
ADDRMUX 5
BANKSELECT 5
CASPIPE 5
CASPIPO 5
ODDACCESS 5
PENDING 3, 5
RASE 6
RASO 6
REFEVEN 5
SRASE 6

states
IDLE state 4

T
Triple Word Read 3
Triple Word Write 3
two-way interleaving 1

W
W_R signal 2
wait state profiles 3
WRE signal 6
WREN signal 4
WRO signal 6

	Return to Index
	COVER PAGE
	CONTENTS
	1.0 INTRODUCTION
	2.0 OVERVIEW
	2.1 Page Mode DRAM SIMM Review
	2.2 Bank Interleaving
	2.3 Burst Capabilities for 32-Bit Bus

	3.0 BASIC DRAM CONTROLLER
	3.1 Control Logic
	3.1.1 Refresh Logic (CAS-before-RAS)
	3.1.2 Clock Generation
	3.1.3 Wait State Profile

	3.2 Address Path
	3.3 Data Path
	3.4 SIMM

	4.0 STATE MACHINES AND SIGNALS
	4.1 ACCESS State Machine
	4.2 PENDING State Machine
	4.3 ODDACCESS State Machine
	4.4 BANKSELA State Machine
	4.5 BANKSELB State Machine
	4.6 ADDRMUX State Machine
	4.7 A3EVEN State Machine
	4.8 A3ODD State Machine
	4.9 RFEVENBK State Machine
	4.10 CASPIPE State Machine
	4.11 CASPIPO State Machine
	4.12 CASE_B3:0 State Machines
	4.13 CASO_B3:0 State Machines
	4.14 RASEVEN State Machine
	4.15 RASODD State Machine
	4.16 SRASE State Machine
	4.17 RDEN Signal
	4.18 WRE Signal
	4.19 WRO Signal
	4.20 REFREQ Signal

	5.0 DRAM CONTROLLER ACCESS FLOW
	5.1 Quad-Word Read
	5.2 Single-Word Read
	5.3 Quad-Word Write
	5.4 Single-Word Write
	5.5 Refresh Cycles

	6.0 CONCLUSION
	7.0 RELATED INFORMATION
	APPENDIX A
	INDEX
	FIGURES
	Figure 1. Two-Way Interleaving
	Figure 2. Quad-Word Access Example Showing ADS and BLAST Timings
	Figure 3. DRAM Controller Block Diagram
	Figure 4. Address Path Logic
	Figure 5. Data Path Logic
	Figure 6. Basic ACCESS State Machine
	Figure 7. Quad-Word Read State Diagram
	Figure 8. Quad-Word Read Timing Diagram
	Figure 9. Single-Word Read State Diagram (A2 = 1)
	Figure 10. Single-Word Read Timing Diagram (A2 = 1)
	Figure 11. Quad-Word Write State Diagram
	Figure 12. Quad-Word Write Timing Diagram
	Figure 13. Single-Word Write State Diagram (A2 = 1)
	Figure 14. Single-Word Write Timing Diagram (A2 = 1)
	Figure 15. Refresh State Diagram
	Figure 16. Refresh Timing Diagram

	TABLES
	Table 1. Wait State Profiles (33 MHz)
	Table A-1. 33 MHz DRAM Controller PLD Equations
	Table A-2. Signal and Product Term Allocation

